Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II.

نویسندگان

  • Yong Lian Zhu
  • Becky Conway-Campbell
  • Michael J Waters
  • Priscilla S Dannies
چکیده

Human R183H-GH causes autosomal dominant GH deficiency type II. Because we show here that the mutant hormone is fully bioactive, we have sought to locate an impairment in its progress through the secretory pathway as assessed by pulse chase experiments. Newly synthesized wild-type and R183H-GH were stable when expressed transiently in AtT20 cells, and both formed equivalent amounts of Lubrol-insoluble aggregates within 40 min after synthesis. There was no evidence for intermolecular disulfide bond formation in aggregates of wild-type hormone or the R183H mutant. Both wild-type and R183H-GH were packaged into secretory granules, assessed by the ability of 1 mM BaCl2 to stimulate release and by immunocytochemistry. The mutant differed from wild-type hormone in its retention in the cells after packaging into secretory granules; 50% more R183H-GH than wild-type aggregates were retained in AtT20 cells 120 min after synthesis, and stimulated release of R183H-GH or a mixture of R183H-GH and wild-type that had been retained in the cell was reduced. The longer retention of R183H-GH aggregates indicates that a single point mutation in a protein contained in secretory granules affects the rate of secretory granule release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of different growth hormone (GH) mutants on the regulation of GH-receptor gene transcription in a human hepatoma cell line.

OBJECTIVE G to A transition at position 6664 of the growth hormone (GH-1) gene results in the substitution of Arg183 by His (R183H) in the GH protein and causes a new form of autosomal dominant isolated GH deficiency (IGHD type II). The aim of this study was to assess the bioactivity of this R183H mutant GH in comparison with both other GH variants and the 22-kDa GH in terms of GH-receptor gene...

متن کامل

Variability of isolated autosomal dominant GH deficiency (IGHD II): impact of the P89L GH mutation on clinical follow-up and GH secretion.

OBJECTIVE Four distinct familial types of isolated GH deficiency (IGHD) are classified, of which type II, IGHD II, is the autosomal dominant inherited form. Based on clinical data, it became evident that there is a wide variability in phenotype among the various GH-1 gene alterations leading to the disorder. As subjects suffering from IGHD II caused by the specific missense mutated P89L GH (C61...

متن کامل

Inhibition of growth hormone (GH) secretion by a mutant GH-I gene product in neuroendocrine cells containing secretory granules: an implication for isolated GH deficiency inherited in an autosomal dominant manner.

Isolated GH deficiency (IGHD) type II is a disease inherited in an autosomal dominant manner. Although point mutations at the donor splice site of intron 3 of the GH-I gene have been identified in patients, the mechanism of how such mutations result in severe GH deficiency is unclear. Recently, we identified two mutations in Japanese patients with IGHD type II, G to A substitutions at the first...

متن کامل

Exon splice enhancer mutation (GH-E32A) causes autosomal dominant growth hormone deficiency.

CONTEXT AND OBJECTIVE Alteration of exon splice enhancers (ESE) may cause autosomal dominant GH deficiency (IGHD II). Disruption analysis of a (GAA) (n) ESE motif within exon 3 by introducing single-base mutations has shown that single nucleotide mutations within ESE1 affect pre-mRNA splicing. DESIGN, SETTING, AND PATIENTS Confirming the laboratory-derived data, a heterozygous splice enhancer...

متن کامل

Evolution of gonadotropin deficiency in a patient with type II autosomal dominant GH deficiency.

BACKGROUND Type II isolated GH deficiency (IGHD type II) is caused by dominant negative splicing or point mutations of the GH-1 gene. Studies have suggested that dominant mutant GH forms prevent the secretion of wild-type GH, resulting in eventual cell death; surprisingly, some patients with these GH mutations develop other hormonal deficiencies (ACTH, TSH). SUBJECTS The proband presented at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 143 11  شماره 

صفحات  -

تاریخ انتشار 2002